“We want everyday developers (...) to be able to use machine learning much more extensively.” This is Andy Jassy’s mantra targeted at making AWS the company that turns machine learning into a commodity, similar to what the company achieved for IaaS before. Within this context, the following two new offerings stood out of the glut of machine learning and IoT news at Re:Invent 2017.
AWS SageMaker - Machine Learning for the Masses, Finally
AWS SageMaker aims to enable developers to enhance any application with machine learning capabilities. ML / AI has remained a niche discipline, due to the absence of developer skills within data center and business disciplines. Enterprise Management Associates is currently working on a research project that aims to quantify the current impact of AI / ML and will show the areas where there’s tremendous potential for ML / AI to improve existing software dramatically.
With AWS SageMaker, Amazon has set out to to change this to put the results of machine learning into the hands of everyone.
Key Value Proposition:
Jassy claims that his teams managed to make the algorythms up to “10 times faster than you find anywhere else.” Based on Jassy, this is due to SageMaker algorithms only needing a single pass through the data, where others require multiple. Test runs against Azure and friends will show whether or not these claims are substantiated.
EMA Quick Take: Bringing machine learning algorithms to the masses opens the door for rapid machine learning-driven innovation. Two pizza teams can now quickly experiment with ideas that would have simply been too expensive before. And most importantly, SageMaker could commoditize machine learning and make it available to companies of any size and industries, versus only the largest and most progressive ones. Therefore, every developer, team lead, CIO and CTO should take a look at SageMaker and throw around some crazy ideas for quick POCs. Let’s try this out and see if it is truly as life changingly turn-key as Jassy claims.
AWS DeepLens - A Pre-trained Deep Learning Edge Camera
The new AWS DeepLens camera (available in April, 2018) answers the question as to ‘what’s going on with Greengrass.’ Just when I was wondering whether Amazon’s edge compute platform would go anywhere, the company comes out with compelling use cases such as an edge camera with built in deep learning capabilies, running on an Intel Atom-powered Greengrass platform.
Key Value Proposition:
Amazon describes deep lense as an edge device with ‘ears, eyes, and a fairly powerful brain.’ While this sounds like the ‘perfect spy,’ this cam is unique in terms of IoT use cases it enables.
EMA Quick Take: Amazon uniquely has 4 ‘secret ingredients’ that could make this cam a ground breaking IoT device and ‘template,’ for similar future devices in different areas:
At the same time the new cam doubles as a ‘training lab’ for machine learning, which already is worth the $240 price tag.
Also, check out all the other machine learning and IoT news from AWS Re:Invent. While interesting, these are not unique and mainly aimed to fill out gaps to prevent customers from shopping around.
SaveSave
SaveSave
SaveSave